

OPTIMIZING DRONE DEPLOYMENT FOR MORE EFFECTIVE MOVEMENT OF GOODS

VICTOR WALKER, INL

Program Manager: Heather Croteau Energy Efficient Mobility Systems (EEMS) Vehicle Technologies Office U.S. Department of Energy

This presentation does not contain any proprietary, confidential, or otherwise restricted information

OVERVIEW

Timeline

Project start date: October 2020

Project end date: October 2022

■ Percent complete: 25%

Budget

■ Total project funding: \$1150K

- INL: \$900K

ANL: \$250K

Barriers and Technical Targets

- Understanding energy impacts and performance of new technology
- High risk to develop and deploy advanced vehicles and infrastructure

Partners

- Idaho National Laboratory
- Argonne National Laboratory

Collaboration with Carnegie Melon University

RELEVANCE

Quickly changing opportunity

Virginia Girl Scouts are using a drone delivery service to dispatch cookies

- Dramatically increasing demand for local, fast delivery
- Technology changes to support easier and automated deliveries
- Strong industry interest in drones
- Regulations actively changing
- Unknown impacts on current systems

Local/State Government/Politics Featured

First U.S. population to experience drone delivery gives it a seal of approval

Published Monday, Apr. 26, 2021, 12:07 am Join AFP's 100,000+ followers on **Facebook**

RELEVANCE Energy is not trivial

- Initial tests indicate that delivery can take significant energy
- Influenced by drone type, package weight, temperature

RELEVANCE

Need for more open data and independent review on drones

Research Needs

- Need for basic data / operations
- Data needed to build physics models
- Component-level breakdown

Industry Needs

- Operations impacts
- Technology options
- Optimal fleet management techniques

U.S. DEPARTMENT OF ENERGY SMARTMOBILITY Systems and Modeling for Accelerated Research in Transportation

RELEVANCE Sample Insights

- Total energy for drone deliveries
- Efficiency and throughput of total delivery system
- Drone types for different missions and conditions
- The effect of environmental conditions (e.g., ambient temperature) on the energy efficiency and mission capabilities
- Impacts of operation changes such as ascent mode, turn methods, hovers
- Impacts of regulations (such as Restricted flight paths, flight heights, speed, size, etc.) in terms of time, speed and energy
- Understanding component energy use
- Strategies for effective drone fleet sizing, dispatching, and charging
- Optimizing by mission profiles and types of business

APPROACH

Open-Environment **Lab-based Testing Testing** Data needs Flight operations Controlled performance Flight patterns Set temperature points Realistic weather Component-level energy Unbiased, Real-time performance Repeatable analysis detailed data Industry Scenarios/ constraints Operation optimization Validation of Experiment Simulation and **Simulation** design **Optimization** Scaled testing of Optimize operations deployment scenarios Real-world Define scenarios and Validate optimization applications constraints results

APPROACH

Drone Testing

- Open Air Testing
 - INL UAS runway
 - Operations
 - Varied Conditions
- Lab Testing
 - Argonne National Lab test cell
 - Components
 - Force Feedback
 - Temperature
- Data provided to models for optimization, labs, industry

APPROACHOptimization Modelling

- Model for operations and comparisons
- Optimization based on Integer programming.
- Objective function:
 Minimize fleet energy consumption for effective delivery of goods (timely and cost-effectively).

Input data:

- Package demand: Daily package demand by size, weight, origin location
- Time: Delivery time windows of each package.
- Customer: customer locations and orders
- Drone information: Number of drones in the fleet, characteristics of each drone.
- Flight parameters (weather, operation options, etc.)

Model outputs:

- Delivery route: Set of alternative delivery routes varied by flight maneuvers, package delivery mechanisms, flight trajectory, flight paths, etc.
- Energy consumption based on flight maneuvers, drone weight, speed, trajectory, weather conditions and other drone parameters considered for energy calculation

APPROACH

Validation / Demonstration

- Open AirDemonstration of techniques
 - INL UAS facilities
 - Multiple drones / scenarios.
- Validation of optimized techniques and methods in realworld setting
- Communication of results

U.S. DEPARTMENT OF EMERGY SMARTMOBILITY

APPROACHTiming / Milestones

Oct-20	Jan-21	Apr-21	Jun-21	Oct-21	Jan-22	Apr-22	Jun-22	Oct-22	d Res	search in Ti
Design / Se	nsor Build /	' Plan						v		
		Range Tes	ting at INL							
		Lab Testin	g at ANL							
			Optimizat	ion and Mod	elling					
						Validatio	n Experiments			
							Communicat	tion /		

Remement	
Milestone Name/Description*	End Date*
Develop detailed test plan for drone testing. Design sensors and create data acquisition plan. (Task 1) (INL,ANL)	12/31/2020
Identify primary scenarios for drone deployment using industry feedback (Task 1). Identify constraints and structure for optimization modelling. (Task 2) (INL)	3/31/2021
Complete environmental and energy testing of at least one drone in the open-air environment at INL. (Task 1) (INL)	6/30/2021
Complete energy testing of at least one drone in the controlled lab environment at ANL. (Task 1) (ANL)	6/30/2021
Complete additional drone testing and perform analysis of initial test data to demonstrate impact of drone operations on energy and throughput. (Task 1) (INL, ANL)	9/30/2021
Complete gathering key data for optimization routines and demonstrate optimization methods on partial data. (Task 2) (INL)	12/31/2021
Complete system optimization model for drone deployment in two scenarios and compare operation profiles. (Task 2)	3/31/2022
Complete a report on component energy from ANL drone testing. (Task 1. (ANL)	3/31/2022
Validate the optimization techniques by performing physical delivery experiments in the open-air environment at INL using at least 2 types of drones and 2 scenarios. (Task 3) (INL)	6/30/2022
Complete the analysis of data and the optimization scenarios. Provide a report of results and complete a draft journal article. (Task 3) (INL)	9/30/2022

Drone Testing

U.S. DEPARTMENT OF ENERGY
SMARTMOBILITY

Spotems and Modeling for Accelerated Research in Transportation

(5)

- Sensor platform for detailed data recording of energy and motion
 - Design
 - Purchase
 - Assembly
 - Programming
 - Testing

Current, Voltage, IMU (Motion), GPS, Temperature, Pressure, Humidity, Wind direction and speed.
Recorded to local computer.

Drone Testing

- Initial Tests underway
- Weather and technical issues reflect drone operational conditions

Drone Testing

U.S. DEPARTMENT OF ENERGY
SMARTWOBILITY

Systems and Modeling for Accelerated Research in Transportation

- Good match with sensor and log reading
- External sensors much more exact and responsive
- Data reflects impacts of wind on performance

Drone Testing

U.S. DEPARTMENT OF ENERGY
SMARTWOBILITY

Systems and Modeling for Accelerated Research in Transportation

- DJI Matrice 600 Pro Acquired for Testing
- Nordbo Robotics
 NRS-6050-D80 sensor
 for lift force feedback
- Energy consumption instrumentation underway
- Detailed test plans complete

PROGRESS Optimization

Optimization

- 3 Major Scenarios Developed:
 - DirectDelivery
 - Delivery as a service
 - ParcelDeliverySupport

U.S. DEPARTMENT OF ENERGY

PROGRESS Optimization

Variable options and operation impacts

	Options			
Drone specification	Hybrid Drone (Wing)	Rotary Hex-Copter (Matrice 600)	Mid-sized Rotary (TBD)	
Drone fleet design	All drones of same type with same specification	Drone type can be mixed – Fixed number of each drone	Unlimited drone supply based on demand.	
Routing Method	Direct Line Varied Approach Paths	Over-Road Flights	Increased No-Fly Zones	
Delivery method	Hovering	Landing		
Cruise Height	100 foot	150 foot	200 foot	
Cruise Speed	30 mph	45 mph	70 mph	
Turn style	Full stop, turn	Rounded turn		
Ascent style	Straight up	45 Degree angle		
Weather				
Wind speeds	O mph	5 mph constant	15 mph constant	
Temperature	32 degrees	72 degrees	95 degrees	

Optimization

- Routing methods have large impact on energy and throughput.
 - Straight-line
 - Increased No-Fly Zone avoidance
 - Follow Road **Network**
 - Random path approach

FUTURE RESEARCH

Continued Testing and Integration

- Executing Test Plan
- Collaboration with more partners
- Obtaining and testing additional platforms
- Optimization development
- Communication

- Challenges:
 - Obtaining relevant airframes
 - Overcoming technical challenges
 - Obtaining relevant comparison data
 - Targeting greatest industry needs

^{*}Any proposed future work is subject to change based on funding levels.

SUMMARY

Critical Data for a Quickly Developing Field

- Key focus on the needs of a growing industry
- Detailed testing to inform critical models
- Optimization to help inform industry
- Critical validation and communication

MOBILITY FOR OPPORTUNITY

FOR MORE INFORMATION

Victor Walker

Principle Investigator Advanced Vehicles Idaho National Laboratory victor.walker@inl.gov

U.S. DEPARTMENT OF ENERGY

SMARTMOBILITY

Systems and Modeling for Accelerated Research in Transportation

